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ABSTRACT

The transformation of earthquake body waves to T waves is as

efficient at deep slopes as at slopes which transect the bofar

axis. Moreover, spectral studies of T phase signatures have

shown no basis for distinguishing between the two cases. As

simple downslope propagation is inadequate to explain the

production of T waves at deep slopes, that process is relegated a

mi 1,or role in favor of scattering from the sea floor as the

dominant mechanism. A slope in the direction of propagation

insures that once energy is scattered in that direction the
probability of its being unfavorably rescattered upon successive

approaches to the sea floor will be less. Scattering near the

sea surface is detectable in the absence of bottom-scattered

T waves. Such abyssally generated T waves display a distinctly

higher frequency spectrum when originating in subazctic regions

than when originating in lower latitudes. This difference i

ascribed to downward ducting of higher frequency energy from the

subarctic surface channel.



INTRODUCTION

'A widely recognized gap in extant hypotheses for the getieratior,

of T waves is the explanation of the strong signals rece 4 ved from

the East Pacific Rise. There the ocean is too deep to support the

production: of sofar rpys by downslope propagatirn. The T phases

received, h weve~r, e those generated at shallow slopes much

more closely than those generated at abyssal depths (i.e., in close 2

proximity to trenches). A second problem is the ohserved difference
between the spectrum of abyssal T wavee generated in the subarctic
and that of T waves from lower latitudes. In order to resolve these

problems a study has been conducted of sonagrams (intensity level

contoured in the frequency-time plane) of T phases from over 400

earthquakes cccurring all around the Pacific.

BACKGROUND

Tolstoy and Ewing (1950) recognized the importance of a sloping

bottom in the production of T waves. The sp.ýcific mechanism of

multiple reflection between the sea surface and its downaloping

bottom (downslope propagation) was first detailed by Hilne (1959).

Johnson et al. (1963) showed that, for a 10* slope and an acoustic

profile typical of the Aleutians, the downslope propagation process

would produce sound chanral rays only if the rays entered the water

at depths of less than about 500 meters. For RSR (refracted

surface-reflected) rays this limiting depth is perhaps doubled.

Although T waves originating over ocean trenches have been observed,

their spectral and time-varying characteristics differ markedly from

slope T waves and a generative "echanisrn involving scattering at the

sea surface has been proposed (Johnson et al., 1968). These authors

noted, howeve., that T phases originating along the East Pacific

Rise display the low-frequency spectrum of slope T phases, yet the
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waves cannot be accounted for by downslope propagation. Cooke

(1967) also recognized this predicament. It is necestary, then,

to modify the hypothesis for slope T-phase generation to " '•

T phases generated at deeper slopes.

DATA

The data presented in the appendix to this report are

sonagrams made from over 400 earthquake T phases tape-recorded

from sound-channel hydrophones of the Pacific Missile Range at

Oahu, Midway, Wake, and Eniwetok islands. Tapes were ordered for

analysis if the paper-drum recordings from the stations contained

T phases from earthquakes which were identified by the U. S.

Coast and Geodetic Survey (C&GS) preliminary determination of

epicenter cards as being from abyssal regions or from an earthquake

of magnitude 6 or greater. In processing the tapes, every T phase

generated by an earthquake identified by the C&CS was songrammed

irrespective of magnitude or region. No attempt was made to

compensate for the response of the hydrophone-cable-amplifter systems,

although their characteristics vary from installation to installation

and systematic spectral differences are thereby introduced.

DEE?-SLOPE T WAVES

A verific ition that T waves are ind 'd radiated from deep

slopes is illustrated by a sequence ot earthquakes which occurred

off northern Honshu In June 1968. The foci of four of the earthquakes

are shown in Figure I as well as the focus of an earthquake farther

offshore. The source data are listed in Table I. Figu'e 2 4

presents the sonagrams of the corresponding T phases. (Frequency
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Fig. I. The foci of five earthquakes off northern Honshu shown both in
plan (upper) and elevation (lower). Bottom contours ore in fathoms.
Source data are listed In Table I and sonagrm are presented in
Figure 2. The bathymetry alog soction A-A* is shown both true
scale and vith 2OX vertical exaggeration.
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Table 1. Source Data for Events Shown in Figure 1.

Selected Oft-Honshu Earthquakes

Event Lat., Long., Depth, Nag., Date, CM,
ON °E km Mb d m y h a a

a 39.5 1'2.4 33 4.1 18 Jun 68 13 38 01

b 39.5 143.1 33 4.3 12 Jun 68 17 23 18

c 39.3 143.0 30 5.1 12 Jun 68 15 48 59.5

d 39.5 143.0 34 4.5 26 Jun 68 20 26 19.0

e 40.2 144.6 27 5.0 24 Her 67 04 11 29.6

ranges 0 to 50 h, bottom to top on all sonagram in this report.)

Event (a) is characteristic of slope T phases while event (e)

generated both an abyssal and a slope T phase at a spacing

appropriate for the distance of the epicenter from the continental

shelf. 14kavlse, events (b), (c), and (d) also gencrated two

groups of T waves, each of which is appropriately spaced for the

distance of the epicenter from the shelf. In cases (b), (c) end

(d), however, the firet group of waves lacks the identifying

characteristics of an abyssal T phase, the only notable distinction

from the second group being the inclusion of higher frequencies.

The water depth at epicenters (b), (c), and (d) was about 2000

eaters with a bottom slope of one to two degrees. These conditions

are clearly insufficient to produce even RSR rays by downalope

propagation over a smooth bottom (Aubrat. 1963).

In fact, however, continental and island slopes are not

smooth, but are cut by submarine canyons and crossed by fault

scarps which serve to scatter acoustic energy upon initial

refraction into the water as well as during multiple reflectiou

ltfir "_he water wedge. This scattering materially reduces the



length of slope required to produce horizontal rays. I,

The scattering .mch~niss is equally operable at sh81k elopese

and must equally cause the production of shallow-slope T waves.,

The shallow-slope T phases may be slightly stronger at the loMwe

frequencies however, since lor er wavelengths, which are not as

readily scattered, can be deflected into horizontal paths by the

len.ith of a slope available. The lack of higher frequency energy

for the shallow-slope T phases shown in Figure 2 is ascribable to

att'onuation over the longer ground p,th. This variation of low-

frequency content with water depth was recognized by Duenanebler

(1968) as a decrease of peak frequency with time over the early

portions of slope T phases from the Fox Islands.

Computed sources of slope T phases have been found to form

clusters indicative of topographically contrzoL.led sites of strong

radiation (Johnson and Norris, 1968a; Duennebier and Johnson,

1%7). By contrast, abyssal T-phase sources appear to radiate

most strongly from the earthquake epicenter. The excitation of

a uniform scattering horizon is inferred from the very gradual

mnoet and decay rates of abyssal T waves. The onset and decay

rates of deep-slope T waves are practically identical with thoee

of shallov-slope T waves, suggesting a similar topographic control

of radiation. The lack of any basis for distinction between the
two groups of signals is readily apparent ic Figure 3, which
contains a selection of sonagrams frct earthquakes slonA the East

Pacific Rise as well as a selection of shallow-slope T vr~es

(Tab"e 11).

The mechanism and conditions for generation of deep-slope

T waves also apply to T waves from the East Pacific Rise. Although

here the average slope is m zh more gradual than at the margins of

the Pacific, the topciraphy is characteristically faulted, the

faults app, rently being in close associatic- with earthquake

epicenters. Such fault scarps, then, -t once ptovide the
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TbJe II. Source Data for Events Shown in Figure 3.

Selected East Pacific Rise Earthquaken (fi. 3# left)

Event Let. Long., Depth, Nag., Date, ift " ' e Ib d am y. h a s

a 44.2W 128.8 33 5.4 28 Jec 67 06 26 15.8

b 42.09 126.2 33 4.9 26 Sep 67 05 51 11

c Z.6N 101.8 33 4.9 28 Mar 68 12 44 38.0

d 2.LIN 101.1 33 4.7 30 Dec 67 02 46 55
e CO0S 104.1 33 4.5 16 Jun 68 14 01 22
f 32.8S 111.7 33 5.4 29 Dec 66 22 16 22.7

9 54.8S 136.0 33 5.4 9 Sep 67 16 52 01.3

Selected Shallow-Slope T Phases (Fig. 3, right)

h 40.6N 125.0 33 4.4 17 Jun 68 03 05 44

i 40.5N 124.6 05 5.8 10 Dec 67 12 06 50.3

J 37 ON 121.o 11 5.0 18 Dec 67 17 24 31.9

k 20.OS 70.3 60 4.6 8 Nov 67 10 47 45.3

1 21.55 70.4 53 5.8 25 Dec 67 10 41 31.6

scattering facets and the localized radiators for deep-sl'pe

T wave generation.

T-phase strength offers no basis for distinguishing between

deep-slope and shallow-slope T phases. T phases from the Gorda

Ridge (Northrop et al., 1968)--which is well oelow the sofar axis--

are at least as strong, relative to earthquake magnitude, as slope

T phases from the Aleutian Ridge (Johnson and Northrop, 1966;



,Ybao P t Porri3, 2965a%. Deep- Zed-ecaosoander piof ilea oL

the bords Ridge indicate faulted blncks with scarps dipping at

30-d4gree aneles (Atwater and Mudie, 1968). Such rugged terrain

pwobably accounts for strong T-wave generation.

T phases originating along southern portions of the East

Pacific Rise are equally as strong as those from the Gorda Ridge.

Here the relief along the crest of the rise is more subdued,

however earthquake epicenters are found to lie principally along

the steep-sided fracture zones which offset the rise (Menard,

1966; Sykes, 1963).

Duennebier (1968), in describing an Eniwetok hydrophone

recording of a magnitude 6.2 earthquake under the Mariana Ridge,

states that energy was continuously received at the hydrophone

from the time of the P phase arrival until after the arrival of

the slope T phase from the Mariana Ridge. Strong signals were

received at intermediate times, corresponding to P-wave travel

to intervening seamounts followed by T-wave travel to the hydro-

phone. Although, as Duennebier points out, the tops of these

seamounts are well below the sofar axis, such steep slopes

(Robertson and Kibblewhite, 1966) may be expected to radiate

T waves into RSR and off-axis sofar paths with relative efficiency.

Two earthquakes from the North Pacific Basin have their foci

(Table III) under the newly discovered Emperor Fracture Zone

(Erickson et al., 1970). Here, the bottom is characterized by

irregular ridges and troughs with elevations no more than 1 km

above the regional level. Since all depths in the epicentral region

are greater than the bottom of the sofar channel, only RSR and

multiply reflecting rays can be generated by scatter at the sea

floor. The T phases recorded at Midway (Figure 4a and b) show the

characteristic broad spectrum of such bottom-scatt I waves, but in

addition they show the gradual onset and decay that is suggestive of

a uniform scattering horizon. This effect may be due to the

alignment of the topography with the direction to Midway or the
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FIG. 4, Sonagrams of T phases from earthquakes under the deep-ocean floor. Source data are listed in Table 111.



result of the superposition of near-surface scatters ii (*qe •

T waves upon bottow-scattered waves.

Table III. Source Data for Events Shown in Figure 4.

Event Lat. Long. Depth, ago., DatE, (we
kms M6 d m y h ua

a 44.8N 174.5E 39 5.5 28 Apr 68 04 18 15.7

b 44.8N 174.7E 33 4.3 28 Apr 68 06 23 02

c 12.0M 130.8W 33 5.3 24 Sep 66 08 57 10.2

Figure 4c shows another Pacific Basin T phase with its focus

(Table III) under the less we11-chartfi ocean floor between Clarion

and Clipperton fracture zones. The low strength of this T phiw,
relative to the earthquake magnitude, suggests a lack of topoardbic

relief in the epicentral region.

PROPAGATION OF DEEP-SWDPE T WAVES

tSR paths exist when the speed of sound in the bottom water

is greater than it is at the surface. This condition Is easily met

in higher latitudes where the surface water is cold; but in the

tropical and sub-tropical Pacific, existence of the conditiL

depends strongly on water depth. From about 45"N - 40"S the East

Pacific Rise it too shallow to permit RSR propagation. Within this

region such sound energy as is scattered clear of a sloping bottom

wiil enter the sofar channel as off-axis rays. At higher latitudes

proportionately more energy will be scattered into initially RSR

paths. Such paths may become totally refracted sofar paths upon

entering regions of warmer surface water.

Unattenuated propagation by totally reflecting paths (normal
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tomw) iS theoretically possible in a comstamt-depth oma. .owsver,

if bOUton Scattering Is an acceptable mechamism for slope T-wave

gasratio, a contimnation of that Scattering oveo the trvel path

voild mllitate against propagation-by normal mds--te significant

distance@. The very 1w frequencies at Stich soued ma be effec-
tively propagated by bostot-reflectiag normal node in the deep

ocean are beyond the senhing range of presently Installed hydro-

phones.

In computing T-phase source locations, it has been assumed

that the nost intense arrival travels at sofar-axis sound speed

(Joknson, 1966). As no nwar-axis sofar rays are generated by the

proposed deep-slope T-wave mechanism, a somewhat higher apparent

Soued speed would be appropriate to such cases. For example, in

the vicfalty of Midway. the sofar ray hiich is horisontal at a

3000-mter •4epth has an apparent speed that is 0.31 higher than the

speed of the acfer axis ray. Such a difference in speed would

produce about an 'ý-second arrival-tim difference over the path

from the tropical East Pacific Rise to Midway. This would corre-

spond to a source locattoo difference of .250. The simple, sharply

peaked sionature of East Pacific Rise T phases should readily

allow the detection of such a discrepancy were the epicenter known

with sufficient accuracy. Such is not likely to be the case in this
remote region of the Pacific, however.

ANYSSAL T WAVES

Situations where the bottoa cannot scatter energy Intc MSR or

sofar paths occur where the ocean flnor is level or at a greater

depth than adjacent areas in the direction of the receiver. Johnson

et al. (1968) detected T waves from such regions in the subarctic

Pacific and termed them "abyssally generated". The signals were

characterized by very gradual onset, a lack of low frequencies, .--•d
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a low strength relative to earthquake magmitude. they ~wnss
apear as the forerunner of a slope-generated T phas (Ueim ler,

1968).

For Pacific earthquakes in lower latitudes, the forerummats,

which may comnce at the tims for direct P-wave arrival, show so

perceptible difference in spectrum from the slope arrivals.

Figure 5 illustrates this contrast between the forerunners of

subarctic and lower latitude T phases (source data listed in Table

IV). As previously noted, the occasional intensification of

Table IV. Source Data for Events Shown in Figure 5.

Event Lat. Long. Depth, Kos., Date, Gmf',
km Mb d m y h a

a 50.61 171.3W 39 6.5 7 Aug 66 02 13 05.1

b 44.3N 151.7K 26 5.8 7 Dec 66 17 17 42.4

c 40A.& 143.2E 07 7.9 16 May 68 00 48 55.4

d 27.4N 144.3E 40 4.6 6 Feb. 64 08 00 35.0

• 20.8N 146.3E 43 6.2 10 Feb 66 14 21 10.9

f 18.4N 146.5E 77 5.0 20 Jan 68 20 06 48.0

g 7.1S 81.6W 23 6.5 29 Aug 63 15 30 31.4

signal strength in the lower latitude events my be &c:ounted for
by radiation from Intervening seasounts. Howveer, even the

tinuous portion of the lower latitude forerunners ha essentially

the sam frequency distribution &, the slope I waves that follow.

The most distinctive acoustic feature of subarctic (and arctic)

waters is the absance of a deep sound channel (Johnson and Norris,

1968b). Although a shallow, subsurface, velocity mlnima may

exist in sumnr, propagation is predominantly RSR. Kutechale (1•91)

found that explosion signals which propagated through the Arctic

Ocean exhibited a dispersion of frequencies which was nicely
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9pslised by normal-mode theory. For a given mode, higher fre-

qsey Nmrgy Is concentrated nearer the surface and propagates

st & correspondingly tower group velocity.

Upon *stering a region with warner surface water, shallower

Mm rays becm sofar rays. This ducting of higher frequency

merV into the sofar channel, which occurs over paths to the PHR

hydrophones from the subarctic but not from the Mariana or

southern Japan trenches, may therefore partially explain the

spectral differences ii. abyssal T waves.

The appearance of a low-frequency cutoff on sonqrams of many

subarctic abyssal T phases (Fig. 5) strongly suggests that their

initial propagation is confined to a surface layer. According to

Kibblewhite and Denham (1965), the minimum duct-depth L for

trapping any modes for frequency f is

L - 0.54 co (f 2g)-l/3

where co is sound speed at the surface and ýR is a constant gradient

of speed. Figure 6 is a graph of this equation for co - 1460 m sec-1

and g - 0.014 sec-1 . If 10 hz is taken as a typical low-cutoff

frequency, it is seen that subarctic abyssal T waves are ducted

within at least the upper 700 meters of water. The absence of

lower frequencies must be ascribed to the absence of significant

large-dimensioned scAtterers at sufficient depth to excite antinodes

for sound pressure for lcser frequencies. At lower latitudes.

scattering in ,euch of this 700-meter layer, as from a rough thermo-

cline, will occur within the sofar channel. Here the interference

patterns of normal-mode propagation are not conditioned by a surface

boundary and depths of antinodes are indeterminate. This may

account for the lower frequencies of T-phase forerunners from the

region of the Mariana and southern Japan trenches, although, alter-

natively, the abundance of seamounts ovt - th,. paths from that regi no

way be tesponsible.

The fact that sloje T phases from the subarctic contain fre-

I!
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quencie. which are lower than those of their abyssally gerated

forerunners indicates excitation of RSR normal mode" at greater

depths. Nearly all of such energy will also be ducted into the

sofar channel upon entering regions of warmer suv-face vater.

CONCLUSION

Earthquakes under deep slopes generate T phases as

efficiently as earthquakes under shallow slopes. In either case

the short onset and decay rates indicate that the T waves are

produced at radiators of restricted dimensions. In contrast,

abyssal T phases, which are produced in the vicinity of trenches

or over the flat ocean floor, show onset and decay rates for which

a uniform scattering horizon is indicated. The production of T

waves at a sloping bottom is ascribed to scattering from the

bottom, either init!•1ly or in the course of multiple reflection

within the water wedpp.

Deep-slope T waves generated within the Central Pocific

follow off-axis sofar paths. This hypothesis may be tested by

comparing observed and predicted arrival times at Midway, with

those at Wake, or at Enivetok, from accurately located sourcei

adlong the East Pacific Rise.

Abyssal T waves from the subarctic region are of distinctly

higher frequencies than are abyssal T waves ,-om lower latitudes.

This difference is ascribed to downward ducting of higher frequency

energy from the subarctic surface channel.
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APPENDIX

The order of the sonagrams presented here is b, geographic location

starting on the Eas 'acific Rise and proceeding aw diagramed on the map j
on the facing page. Page numbers are written by segtmeus of the position

1,ine.

The annotation of sonagram, with few exceptiono, is the annotatiov

used on CGS Preliminary Determination of Epicenters cards. Some events

which were not located by C&GS but by hydrophone network axe marked by a

dagger and annotated in the form used in tae HIG T-Phase Source Locations.

C&GS annotation:

29 DEC 66 22 1U 22.7 32.8S 111.7N
EASTER ISLAND CORDILLERA 33R 5.4 24

area name Ci-eeawich Live depth, magni- hvdro-
km tude ph-..a no.

HIG T-Phase annotation:

t24 MAY 67 06 12 31 55.7S 136.6W

EAST PACIFIC RIDGE 7-4 44 23

area name Grerenwtch time number of T-phast hydro-
phones-no. of strength, phone

stations db no.

HydrophoneA at Oahu, ihdwIy, Wake, and Eniwetok are numbered in the 10's,

20's, 30's, and 40's, respectively.

The sonagrms display relative intensity contoured in the frequency-time

plane. They have an intensity ranige of 42 db (seven 6 db coctours). Frequen-

cies range, vertically, from 0 to 50 hz. The duration of a single sonmgrm

is 6.4 minutes.

A-1
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